一种变压器DGA在线监测数据异常模式判定方法
摘要:
本发明涉及一种变压器DGA在线监测数据异常模式判定方法,导入DGA在线监测数据,设置滑动窗口的长度和滑动步长,以一定的步长滑动窗口遍历在线数据集,对截取的每个数据窗口,使用基于最小二乘的滑动数据分段线性化算法拟合,使用拟合所得线段的斜率、包含数据的实际增长率以及该线段的跨度表征拟合出的这条线段,构建描述的线段相似度的模型,并使用K‑means算法对线段集进行聚类分析;线段集的符号化表示,归总不同序列符号化后集合中元素数目;基于Apriori算法的思想,挖掘不同序列之间存在的频繁项集,量化不同序列之间的关联性,根据序列之间的关联性强弱,对判定数据中存在的异常数值类型,分离出不同异常模式的数据。
0/0