一种电力信息采集系统运行状态的预测评估方法及装置
摘要:
本发明提出了一种电力信息采集系统运行状态的预测评估方法及装置,所述方法包括:实时采集布置于各个地点的电网数据信息;根据电网实际情况对已有数据以及实时采集的数据进行标注处理,对标注的不同数据赋予不同权重;利用深度残差网络Resnet‑50融合多尺度卷积网络,从标注数据集中提取多尺度用电信息特征;将提取的特征向量输入预测模型,所述预测模型为结合了BiLSTM和Attention网络的模型,输出状态预测及其得分。本发明通过对新旧数据集的权重实时进行调整,利用多尺度的卷积网络分别提取到用电数据浅层深层的特征,预测模型的组合更加关注于对性能提升有用的部分,从而能够对用电信息采集系统的状态进行及时的预测评估,有效保障电力生产安全可靠运行。
0/0