一种基于网络特征的强化学习下的SDN路由收敛方法
摘要:
本发明公开一种基于网络特征的强化学习下的SDN路由收敛方法,该方法将强化学习应用于SDN路由收敛中,使用QLearning算法作为强化学习模型,根据输入的网络拓扑,定义一个方向因子θ来描述路径中每一次转移的方向。根据路径转移过程中θ值来引导强化学习agent探索。在早期的episode中允许agent在探索阶段选择对应θ值为负的动作,而随着episode的不断迭代减少agent探索对应θ值为负的动作的概率。以此来保证在agent从环境中充分获得经验的同时提高探索效率,并减少在训练阶段环路的产生。本发明利用强化学习与网络环境不断交互、调整策略的特点,相比于传统的路由收敛算法,能在路由收敛过程中找到最优路径。
0/0