基于多伯努利的非规则多扩展目标联合跟踪与分类方法
摘要:
本发明属于信息融合领域,具体涉及一种基于多伯努利的非规则多扩展目标联合跟踪与分类方法。然而以往的联合跟踪与分类算法都是将目标的扩展状态建模为椭圆,在目标大小相似时不能正确对目标进行分类。为此,结合RHM(Random Hypersurface Model,RHM),本发明给出一种基于多伯努利的非规则多扩展目标联合跟踪与分类算法,即JTC‑RHM‑CBMeMBer滤波方法,该方法不仅能对非规则扩展目标的运动状态、量测率、扩展状态等进行估,还能估计目标的类状态,且在算法复杂度上与RHM‑CBMeMBer滤波算法相当。
0/0