一种基于改进的卷积神经网络ResNeSt50的胃印戒细胞癌分类方法
摘要:
本发明涉及了一种基于改进的卷积神经网络ResNeSt50的胃印戒细胞癌图像分类方法,包括:首先从医院获取原始数据;再进行数据预处理和数据增强;预训练ResNeSt50模型并改进其结构;将改进的模型与其他state‑of‑the‑art模型进行公平的比较;制作概率热力图,训练随机森林分类器。最后进行病理图像级别的分类,得出分类结果。本发明提出的方法不仅在切片级别的分类上取得了很好的效果,同时在病理图像级别的分类上取得了不错的结果,病变区域可视化效果也优于现有的方法。
0/0