一种时空气象特征提取与深度学习的风电功率预测方法
摘要:
本发明公开一种时空气象特征提取与深度学习的风电功率预测方法,首先基于广域时空气象数据和功率数据,研究新能源场站出力和天气过程的互相关特性,建立不同指标为依据的多层级子区域划分,然后基于多维度气象数据,构建高维度候选特征库,构建基于数据挖掘的复合气象特征,最后基于海量样本和优选的核心特征,构建基于高维深度特征映射和高维深度数据挖掘、面向多层级的深度学习模型库,选取最优模型进行集群功率预测。通过该方法预测,实现了对风电功率在时空复合数据下的预测,在时域数据和空间数据之间建立了有效的匹配关系,具有推广价值。
0/0