一种基于深度学习的漏洞攻击检测方法和设备
摘要:
本发明提出了一种基于深度学习的漏洞攻击检测方法和设备。所述方法包括:对获取的Web数据进行预处理,将URL字段以字符形式表示;对预处理后的URL进行分词,并转换成统一的表示形式,得到URL语句的集合;将URL语句的集合中的每个词转化为向量,得到表示URL中有效语义信息和其他潜在属性信息的词向量矩阵;词向量矩阵输入预先构建的深度学习模型DMA‑BiLSTM中,对URL特征进行分类。本发明通过分析URL中隐藏的攻击,将攻击检测任务转换为分类任务,通过深度学习模型有效进行检测,取得了较好的效果。
公开/授权文献
0/0