发明公开
- 专利标题: 基于时序点的网络攻击事件预测方法、系统、装置及介质
-
申请号: CN202110861448.2申请日: 2021-07-29
-
公开(公告)号: CN113660225A公开(公告)日: 2021-11-16
- 发明人: 任怡彤 , 田志宏 , 鲁辉 , 孙彦斌
- 申请人: 广州大学
- 申请人地址: 广东省广州市大学城外环西路230号
- 专利权人: 广州大学
- 当前专利权人: 广州大学
- 当前专利权人地址: 广东省广州市大学城外环西路230号
- 代理机构: 广州嘉权专利商标事务所有限公司
- 代理商 黎扬鹏
- 主分类号: H04L29/06
- IPC分类号: H04L29/06 ; G06F16/901 ; G06N3/04 ; G06N3/08
摘要:
本发明公开了一种基于时序点的网络攻击事件预测方法、系统、装置及介质,方法包括:获取历史攻击事件数据,根据历史攻击事件数据生成第一事件序列,进而确定第一事件特征以及事件发生时间;根据第一事件特征构建第一事件图谱,进而通过图嵌入算法对第一事件图谱进行处理,得到第一特征向量;将第一特征向量和事件发生时间输入到预先构建的循环神经网络中进行深度点过程的模型训练,得到训练好的时序点过程模型;根据时序点过程模型预测得到下一次网络攻击事件的发生时间和事件类型。本发明通过图嵌入将事件图谱转换成特征向量,利用深度点过程对特征向量和时间发生时间进行训练,提高了网络攻击事件预测的准确度,可广泛应用于网络安全技术领域。