电力负荷预测方法、装置、设备与存储介质
摘要:
本发明公开了一种电力负荷预测方法、装置、设备以及计算机可读存储介质,所述方法通过将预设时间段的非结构化数据输入卷积神经网络中后用Transformer编码器模型进行特征赋权,能够给予重要特征更多的权重,并采用引入attention机制的双向LSTM对结构化数据进行特征提取,能够从众多信息中选择出对当前任务目标更关键的信息,最后采用特征向量拼接的方式将第一特征向量和第二特征向量拼接输入到全连接神经网络中来预测电力负荷,有效提高了电力负荷预测结果的准确性。
公开/授权文献
0/0