一种基于迁移学习深度学习相结合的风电功率预测方法
摘要:
本发明公开一种基于迁移学习深度学习相结合的风电功率预测方法,通过SCADA系统及数值天气预报,提取新建风电场及周边风电场的历史样本,使用新建风电场的少量历史样本训练BP‑NN,再对周边风电场的大量历史样本预测,根据预测结果计算周边风电场每个历史样本的相关系数;根据相关系数将周边风电场的大量历史样本为强相关样本、中相关样本及弱相关样本;分别使用顺序迁移、逆序迁移、无序迁移等三种模型迁移方法,构建用于新建风电场的预测模型并分别给出预测结果;最后使用B‑LSTM网络将三个预测结果集成,输出最终预测结果。本发明通过数据挖掘并结合深度学习算法,利用多层级模型迁移获得适用于新建风电场预测模型,提高新建风电场预测精度,具有推广价值。
0/0