基于Retinex模型的低照度图像增强与去噪方法
摘要:
本发明公开了一种基于Retinex模型的低照度图像增强与去噪方法,首先用图像采集设备获取待增强的低照度图像;然后将低照度图像分解为光照分量L和反射分量R两个未知分量,根据先验特征为光照分量L和反射分量R构建先验约束;引入变量B代表无噪声的低照度图像,根据图像非局部相似性,为无噪声的低照度图像B构建无噪声的先验约束条件,结合光照分量L和反射分量R的先验约束条件,构建分解优化目标函数;并进行求解,判断是否达到可行性解;最终的增强结果表示为Lγ⊙R,其中γ为校正因子,Lγ表示反射分量L矩阵中的每个元素的γ次方,⊙表示矩阵中对应元素相乘。本发明解决了现有技术中存在的低照度图像增强后噪声较大的问题。
公开/授权文献
0/0