基于局部数据增强的流程工业强化学习控制的加速方法
摘要:
本发明公开了一种基于局部数据增强的流程工业强化学习控制的加速方法,包括:首先,在强化学习训练过程中,在历史案例库中检索与当前状况相似的案例,将其作为局部模态下的邻近数据;其次,利用这些检索到的基于案例的知识,在局部操作范围内建立辅助的局部动力学模型;然后,使用在线建立的局部动力学模型生成一系列虚拟的案例,作为经验回放缓冲区的增广案例;最后,将生成的虚拟案例和交互获得的真实案例合并,共同组成一个新的联合经验回放缓冲区,用于更新强化学习智能体。本发明可有效地提升强化学习智能体在跨模态/跨工况情况下的训练效率以及迁移学习能力,从而为流程工业智能优化控制奠定基础。
0/0