基于全卷积图神经网络的全景图片显著性预测方法及设备
摘要:
本发明提供一种基于全卷积图神经网络的全景图片显著性预测方法及设备,包括:将平面全景图像映射成为球面的图数据;将所述球面的图数据输入到全卷积图神经网络进行显著性预测,得到球面显著性图数据;将所述球面显著性图数据变换到平面上,得到平面的全景显著性图像。进一步的,本发明全卷积图神经网络基于残差U形网络结构,在底部采用了膨胀图卷积和注意力机制。此外,本发明使用了一种新的全卷积层,用于球面图空间中的图池化和反池化操作,以保留节点到节点的特征。本发明提出的方法在大规模数据集上优于其他较为先进的显著性预测模型。
0/0