一种基于迁移学习获取配电线路故障分类、定位与选线深度学习模型的方法
摘要:
本发明涉及一种基于迁移学习获取配电线路故障分类、定位与选线深度学习模型的方法,使用PSS/E等电力系统仿真软件产生足够的带有故障类型、故障位置与故障线路标签的故障数据用于以训练深度学习模型,进行深度特征抽取,之后将抽取的深度特征迁移到实际电力系统中的工业数据,利用数据集之间的高维相似性实现从源域到目标域的迁移、域适应。有益效果是解决小规模、不平衡数据集进行故障精准分类、定位与选线的难题,应对实际工业界带标签数据数据不足、数据不平衡的问题。
0/0