一种基于图像分类的自监督主动学习方法
摘要:
本发明公开了一种基于图像分类的自监督主动学习方法,其包括步骤:获取图像数据集;设置迭代次数以及阈值;自监督网络对数据进行预训练处理,得到特征映射;每轮迭代都根据特征映射中样本到已知类别簇中心的距离对候选未标注样本进行评估;向人工专家查询合适的样本;人工专家对请求查询的样本标注后加入已标注池,更新评估函数与簇中心;样本输入分类器训练优化模型,记录准确率,直到模型达到预期的性能或者查询样本超过设定的上限停止迭代。本发明充分利用自监督网络学习到样本的特征映射来构建主动学习指标,指导主动学习策略进行样本挑选,从而节约标注代价。
公开/授权文献
0/0