一种基于证据深度学习的双目匹配不确定性估计方法
摘要:
本发明公开一种基于证据深度学习的双目匹配不确定性估计方法,通过卷积神经网络提取和聚合特征,进而获得一个匹配代价体和三个不确定性体,在匹配代价的指导下,计算出证据分布的四个超参数γ,ν,α和β;最后通过四个超参数计算双目匹配视差值,偶然不确定性和认知不确定性。本发明很好地反映出双目匹配的难易程度,提升不确定性估计的表现,而且面对分布外的数据时能给出较高的认知不确定性。
0/0