一种基于大数据的动力电池热失控预测方法
摘要:
本发明涉及新能源汽车技术领域,尤其涉及一种基于大数据的动力电池热失控预测方法,本发明利用新能源汽车大数据,对检测车辆PACK内所有单体的端电压保持长期采集,数据进行清洗处理后,建立一维线性数学模型,根据数学模型计算获得所有单体拟合曲线的当前值集合和斜率值集合。用当前值评估内短路的严重程度,用斜率是来评估其内短路的变化速率。依据严重程度和变化速率评估因内短路引发动力电池热失控的风险。为实现计算机的自动识别,本方案提出获得所有装车的同款电芯的当前值集合和斜率值集合。在获得所有电芯当前值和斜率值后,利用离群算法筛选有较大风险发生热失控的电芯,并判断该电芯所归属的车辆有发生热失控的风险。
公开/授权文献
0/0