基于改进RBF神经网络的数据分级存储算法
摘要:
本发明提供基于改进RBF神经网络的数据分级存储算法:对首次存入的数据进行分级,根据一、二、三级存储设备的性能及容量特征得到存储级别,根据分级结果对数据进行数据存储。数据分级存储系统满足迁移条件时,计算数据迁移因素值,建立数据分级神经网络模型,得到数据迁移因素值与存储级别之间的映射关系。将数据迁移因素值作为数据分级神经网络模型的输入,根据触发条件选择迁移方式,根据差值P筛选迁移数据算法。本发明面向多源、异域、跨系统、多类型数据的分级存储策略及模型,实现数据不同级别之间的数据迁移,有效提高数据的访问效率及数据库的利用效率,提升数据管理决策效率,加快平台存储性能,降低平台存储成本。
公开/授权文献
0/0