基于双向双层注意力LSTM网络的多模态情感分类方法及系统
摘要:
本发明公开了一种基于双向双层注意力LSTM网络的多模态情感分类方法及系统,首先多模态数据特征的选取;然后对于音频数据选择双层的单向LSTM模型,用于抽取音频特征,对于文本和视频信息,选用TBA‑LSTM(Two‑layerBILSTM based on Attention)模型进行特征抽取;接着将抽取后的特征进行张量融合的方式;最后使用注意力机制来进行多模态数据的分类问题。本发现相对于一些其他的传统模型(LSTM,TFN,MFN,MARN等等),在公共数据集上CMU‑MOSI上,其精度和F1_Score均有显著程度的提升,并且其深层次的特征抽取能力更强。
0/0