一种基于先验知识时变图卷积网络的交通流预测方法
摘要:
本发明公开一种基于先验知识时变图卷积网络的交通流预测方法,步骤如下:收集交通流数据,传输至交通大数据集群。对采集的数据进行预处理;生成交通图和特征矩阵,按照记录时间生成时间序列,将其划分为训练集和测试集;生成稳定特征矩阵和动态特征矩阵,利用编码器‑解码器结合自注意力机制将两种矩阵融合为先验知识图矩阵;构建先验知识时变图卷积网络,该网络由动态空间特征提取组件和动态长期时间特征提取组件组成;用训练集训练先验知识时变图卷积网络,并用测试集测试模型的预测精度。本发明通过构建编码器‑解码器结合自注意力机制有效提取传感器多层次的稳定和动态节点特征,提高了传感器节点之间的动态关联特性,实现模型精度的提升。
0/0