数据不完备场景下的动力锂电池剩余寿命预测方法
摘要:
本发明公开了一种数据不完备场景下的动力锂电池剩余寿命预测方法。首先,针对不完备数据问题,提出了生成式对抗神经网络的数据填充方法,以抵消由于数据不完备导致的预测误差。在此基础上采用堆叠去噪自编码器进行数据特征处理,通过克里金方法进行数据拟合,提出了一种堆叠去噪自编码器‑克里金SDAE‑Kriging的高级建模方法来预测具有填充数据的动力锂电池剩余使用寿命。最后,与现有的一些方法进行了比较,结果表明本发明提出的方法具有更好的预测精度。此外针对不同的缺失率建立了不同的剩余使用寿命预测模型,也发现对于不同的缺失数据集,本发明提出的方法同样具有可靠的填补效果和稳定的预测结果。
0/0