一种基于神经网络的麻醉深度监测方法
摘要:
本发明涉及数据处理技术领域,具体涉及一种基于神经网络的麻醉深度监测方法,包括:训练自编码网络获得信号数据的收敛序列,通过多阈值分割获得信号数据的收敛序列的转折点;计算信号数据的第一噪声概率;根据第一噪声概率序列的阈值进行划分获得多个概率子序列和数据子序列;获得信号数据序列的趋势项序列和每个数据子序列的趋势项子序列;根据局部相似度获得目标子序列,根据目标子序列的均值相似度获得所有对象子序列及局部概率相似度,获得信号数据的第二噪声概率;将信号数据的第二噪声概率作为权值,构建识别网络的损失函数,训练识别网络。本发明将第二噪声概率作为误差权重,排除训练过程中的噪声干扰,得到鲁棒性更强的识别网络。
公开/授权文献
0/0