核电循环水泵在线异常监测及辨识方法
摘要:
公开了一种核电循环水泵在线异常监测及辨识方法,方法中,在线获取循环水泵运行过程中的多源时序数据,通过专家分析模块给定数据标签,进行数据规范化处理并随机划分信号为训练集和测试集样本;在输入数据流仅包含健康数据时,基于特征层约束长短时自编码器的数据融合监测模块,注意力机制及门结构可充分挖掘数据的状态信息和潜在关联特性,实现健康样本下的状态监测;随着监测数据中异常数据出现,基于编码器特征进一步构建异常辨识网络,构建基于交叉熵、蒸馏损失及三元组损失的联合损失函数;采用邻近均值分类器实现对已知/未知异常状态的在线监测及辨识。本方法具有较好的兼容性和扩展性,向运行维护人员推送更精准的状态监测结果。
0/0