基于对比学习的CTR预测模型训练方法、装置及电子设备
Abstract:
本申请提供一种基于对比学习的CTR预测模型训练方法、装置及电子设备。该方法包括:将用于CTR预测模型训练的离散特征映射到低维度的稠密向量中,得到原始特征向量;对原始特征向量进行正则化约束,得到特征对齐损失和特征一致性损失;对原始特征向量进行数据增强,得到第一特征向量和第二特征向量,对第一特征向量和第二特征向量进行特征交叉得到中间向量,计算中间向量之间的距离,得到对比学习损失;依据特征对齐损失、特征一致性损失、对比学习损失以及原始CTR预测任务的损失函数生成综合损失函数,利用综合损失函数反向更新模型参数,以便对CTR预测模型进行训练。本申请提高了CTR预测模型训练的泛化性能,从而提升CTR预测模型的预测性能及预测精度。
Patent Agency Ranking
0/0