发明公开
摘要:
本发明提供了一种多重网络化产业链中面向智能体动态性的自适应任务迁移方法,以解决网络层与任务不匹配导致负载不均衡、智能体过载风险的问题。首先,将多重网络化产业链上的智能体进行动态性建模,并选择网络层内的后备智能体来替换故障智能体;其次,为了解决网络层间出现负载不均衡问题,计算各网络层间的状态势场,随着势场降低的方向进行网络层间任务迁移;最后,为了减少智能体的过载风险,计算网络层内各智能体的状态势场,通过势场梯度进行网络层内的任务迁移。与传统基于单一方法任务迁移策略相比,本方法研究网络层内与网络层间任务迁移的特性,实现网络层间的负载平衡,同时能有效减少智能体过载风险,提高产业链的稳定性。