抗后门攻击的智能早产儿视网膜病变分类预测方法
摘要:
本发明公开一种抗后门攻击的智能早产儿视网膜病变分类预测方法,包括以下步骤:获取患儿电子病历文书数据,并对患儿电子病历文书进行预处理,得到样本数据;以带有诊断标签的样本数据作为输入,以及以早产儿视网膜病变类别作为输出,建立基于深度学习的分类预测模型;使用字符级别的触发器对分类预测模型注入权重后门攻击,形成被投毒模型,利用LoRA算法微调被投毒模型的权重,并根据被投毒模型输出的置信度识别中毒样本和干净样本,最后结合对抗训练进一步提升分类预测模型的抗攻击性。本发明的有益效果是:从数据层面和模型训练层面多维度的抵御后门攻击,保证分类预测模型的安全性。
0/0