一种基于深度学习的坝下支流顶托条件分析系统
摘要:
本发明公开了一种基于深度学习的坝下支流顶托条件分析系统,属于水位预测计算技术领域,包括以下步骤:S1:数据预处理,从计算目标水利设施的历史运行数据中获取数据,将数据处理为模型训练格式;S2:借助SVR模型或多元线性回归模型,构建单一时段下游水位预测模型;S3:构建随机森林模型,分析不同时段前的坝下支流流量和水位预测误差的权重关系,得到坝下支流对坝下游水位造成顶托影响的阈值;S4:构建深度学习模型,使用LSTM模型构建深度学习坝下水位预测模型,计算不同情景的预测误差判断坝下流量造成顶托影响的阈值。本发明最终得到的坝下支流顶托影响滞时和阈值,可对受到坝下支流顶托影响的水坝下游水位预测分析提供帮助。
0/0