一种基于训练后量化的视频超分方法
摘要:
本发明公开了一种基于训练后量化的视频超分方法,首先使用数据集训练FP32的模型,然后使用TensorRT对模型进行部署;最后使用数据集进行int8量化以及校准。本发明提出了视频超分网络的优化方法能够有效的减少参数量,缩短推理时间。并实现部分场景下的落地使用。本发明基于TensorRT对FRVSR做训练后静态量化,并针对量化误差大的层做分组量化,能够保证最终的量化精度,并提出了具体的实现方案,能够有效的优化FRVSR在GPU上的推理部署。
0/0