一种基于深度学习的新能源爬坡事件滚动预警方法及系统
摘要:
本发明为了解决现有新能源爬坡事件预警中没有考虑区域间联络线的调节能力以及新能源出力和负荷功率时序相关性的问题,提出了一种基于深度学习的新能源爬坡事件滚动预警方法及系统,基于区域间联络线对新能源出力的灵敏度对联络线进行筛选,得到区域关键联络线;采用LSTM预测模型充分挖掘时间序列的隐藏关系,确定区域间关键联络线调节能力;通过预测不同时间尺度的关键联络线功率的LSTM预测模型,结合新能源出力预测信息、电网负荷功率预测信息和区域内功率控制措施的运行状态根据控制代价计算进行分时段分级预测,确保分时段分级预警准确性,避免了时域仿真,计算快速。
0/0