一种基于前景感知动态部件学习的行人再辨识方法
摘要:
本发明公开了一种基于前景感知动态部件学习的行人再辨识方法,涉及人工智能、机器视觉领域,包括:将浅层特征映射解码为前景能量图,利用交叉熵优化前景能量图,使其趋于真实前景标签,再将前景能量图空间划分为若干部件能量块,用各个部件能量块代表相应的浅层特征映射块的当前重要性;结合当前重要性和历史重要性对各浅层特征映射块进行综合重要性计算并排序,根据综合重要性排序优先选择高综合重要性的浅层特征映射块参与行人再辨识模型训练,从而减少来自背景区域的低综合重要性的浅层特征映射块参与行人再辨识模型训练的机会,达到抑制背景区域对行人辨识的干扰,提升行人再辨识准确性,可广泛应用于智慧城市场景中的城市安防系统。
0/0