一种基于大语言模型的蜜点漏洞生成方法
摘要:
本发明提供了一种基于大语言模型的蜜点漏洞生成方法,包括:根据蜜点仿真的服务信息与大语言模型交互选择蜜点漏洞模拟目标;结合大语言模型的知识库和蜜点漏洞模拟目标的漏洞信息确定请求响应规则集;生成漏洞模拟代码用于解析攻击者请求的数据包并与请求响应规则集进行匹配然后生成响应;根据漏洞模拟代码、蜜点漏洞模拟目标的配置信息与大语言模型交互以生成部署脚本和测试脚本,运行部署脚本启动蜜点实例,运行测试脚本验证蜜点实例以使蜜点实例成功启用。应用该方法能够减少对安全人员领域知识的依赖,减轻工作量,提升蜜点漏洞部署效率。大语言模型对蜜点服务的全面分析也可以解决模拟漏洞类型与服务场景不匹配的问题以提升欺骗性。
公开/授权文献
0/0