基于多粒度卷积特征融合的中文情感分析方法及系统
摘要:
本发明提出了基于多粒度卷积特征融合的中文情感分析方法及系统,涉及自然语言处理领域,具体方案包括:对待分析的中文文本数据进行分词处理,得到词向量;将所述词向量分别输入到多粒度卷积层和L‑BiLSTM层,得到局部情感特征和全局情感特征;所述局部情感特征和全局情感特征经过特征融合层和缩放点积自注意力层后,得到文本情感特征;基于文本情感特征,通过寻找情感标签转移概率优化情感标签,得到最优的情感分类结果;本发明在传统的BiLSTM网络中引入长度门,动态地调整输出序列的长度,得到L‑BiLSTM网络,综合Bert模型和多粒度卷积网络,实现对文本情感特征的高效保留和高效提取,显著提高了中文情感分析的准确性。
0/0