摘要:
本发明公开了一种同时低剂量CT重建与金属伪影校正的深度学习方法,包括如下步骤:步骤S1、构建用于低剂量CT重建和金属伪影校正的基于多尺度自适应的深度稀疏变换网络模型;步骤S2、训练基于多尺度自适应的深度稀疏变换网络:步骤S3、向构建好的图像域最优网络模型中输入含有金属伪影的低剂量CT图像和金属掩膜,基于多尺度自适应的深度稀疏变换网络的输出为金属伪影校正后CT图像。本发明是少数用于金属植入物存在时的低剂量CT重建的方法,具有一定的可解释性,且不需要用到难以获得的弦域数据,具有高精度的金属伪影校正性能。
公开/授权文献
- CN117726705A 一种同时低剂量CT重建与金属伪影校正的深度学习方法 公开/授权日:2024-03-19
IPC分类:
G | 物理 |
G06 | 计算;推算或计数 |
G06T | 一般的图像数据处理或产生 |
G06T11/00 | 2D〔二维〕图像的生成 |