一种基于深度学习的时变水声信道估计方法
摘要:
本发明提出的一种基于深度学习的时变水声信道估计方法,应用在水声通信领域中。本发明采用创新性的逻辑设计,首先通过水声正交频分复用系统生成原始码元,在原始码元中插入置零的直流子载波;通过4AQM方式对并行数据进行调制;信号经过引入高斯白噪声的时变水声信道;对信号进行解调;利用卷积神经网络、双向门控单元、自归一化网络、全连接网络构建信道估计模块,并引入注意力机制;最后采用Nadm优化器和多分类交叉熵损失函数对网络进行训练。本发明有效解决了时变水声信道下OFDM系统中存在的误符号率和误码率性能失真的问题。仿真结果表示,此方法表现出的性能优于传统的最小二乘法和最小均方误差,提高了水声信道估计的精度。
0/0