基于社区意识的图掩蔽自编码学习方法、系统及存储介质
摘要:
本发明属于神经网络模型技术领域,公开了一种基于社区意识的图掩蔽自编码学习方法、系统及存储介质,所述基于社区意识的图掩蔽自编码学习方法将社区结构信息引入GAE框架,并在学习过程中保持社区的影响力;采用社区引导的边缘掩蔽和节点特征掩蔽;在自动编码器中使用GNN进行多任务解码,并辅以动态损失函数,从原始数据中提取额外的有价值信息,用于增强图重建;在节点分类、链接预测和图分类等多个下游任务上,ComMGAE在学习图表示时保留图拓扑结构和语义信息。本发明的目标是识别现有GAE设计的弱点,并在图表示学习中完善相关工作,以应用于下游任务,如链接预测以及节点或图分类。
0/0