一种周界入侵单个人体完整识别方法及系统
摘要:
本发明公开一种周界入侵单个人体完整识别方法及系统。其中,该方法采用基于深度学习的实例分割模型对输入的聚类结果点云判断其是否为多个目标合并,且精准地将每个人体实例单独分割出来,然后再通过人体完整性分类模型去判断每个人体是否完整,如果分类结果不完整,再通过在原始点云中邻域搜索的方法查找相关邻域点进行补全。该方法引入边界置信度这个指标,量化了一个点是否为多个目标之间的边界点的概率,并且通过边界置信度损失值增强了对边界点的分割精度,大大提升了实例分割的效果;该方法针对人体完整性分类网络耗时的问题,采用中心区域下采样的方法减少了输入点云的数量,在保证识别准确率的情况下,又大幅提升了识别速度。
公开/授权文献
0/0