基于分层特征融合网络的小样本分类检测方法
摘要:
本公开公开一种基于分层特征融合网络的小样本分类检测方法,包括:采用不同深度的网络作为特征提取器,并构建关系得分作为样本类别相似性度量单位,实现高精度、高效率的小样本图像分类工作。该模型首先采集不同层次的样本特征信息,并利用特征融合方法获得基于不同深度的样本特征信息载体。然后将融合特征通过特征空间凝聚成原型点,提高分类工作的效率。最后通过构建可学习的相似性度量方式,对样本不同类别之间的信息进行学习,获得预测结果。相较于当前技术中对小样本学习过程中丢弃浅层特征和追求深度特征带来的样本信息利用不充分问题,通过本公开方案生成的小样本图像分类模型,提高了图像的分类准确率和效率。
0/0