基于LSTM网络的雷达干扰对抗态势预测方法
摘要:
本发明公开了一种基于LSTM网络的雷达干扰对抗态势预测方法,主要解决现有贝叶斯网络对专家经验依赖性过强,单一结构的神经网络对大量时间序列数据处理速度慢,且未考虑实际场景中干扰机会根据雷达的工作状态调整干扰策略的问题。其实现方案是:构建雷达工作参数及工作模式数据集和有源干扰样式数据集,并将雷达工作模式加入有源干扰样式数据集中;构建Transformer‑LSTM网络并利用训练集对其进行训练,使用训练好的网络预测雷达干扰对抗态势。本发明能并行处理整个序列,提升了计算效率和全面性;同时将雷达工作模式纳入有源干扰样式数据集中,更加符合实际,进一步提升系统的预测适用性,可用于机器学习、深度学习及干扰信号分析。
0/0