一种基于机器学习的特高压设备的故障监测方法与系统
Abstract:
本发明涉及一种基于机器学习的特高压设备的故障监测方法与系统,包括基于特高压设备历史运行过程中的故障相关数据,形成特高压设备运行状态综合诊断数据库;基于特高压设备运行状态综合诊断数据库中的故障特征数据,建立可量化的油气数据分布规律描述指标;基于所述故障相关数据和可量化的油气数据分布规律描述指标对人工神经网络进行训练,建立特高压设备异常工况分析模型;收集特高压设备的油色谱多个气体组分的浓度信号和比例信号,将所述浓度信号和比例信号输入特高压设备异常工况分析模型,判断所述浓度信号和比例信号是否异常。
Patent Agency Ranking
0/0