发明公开
EP2651065A3 Method and apparatus for convolutional coding to support multiplexing in a wideband communications system 有权
用于卷积编码的方法和设备,以支持复用宽带通信系统

  • 专利标题: Method and apparatus for convolutional coding to support multiplexing in a wideband communications system
  • 专利标题(中): 用于卷积编码的方法和设备,以支持复用宽带通信系统
  • 申请号: EP13163343.0
    申请日: 2013-04-11
  • 公开(公告)号: EP2651065A3
    公开(公告)日: 2013-12-11
  • 发明人: Eroz, Mustafa, Dr.Antia, YezdiLee, Lin-Nan, Dr.
  • 申请人: Hughes Network Systems, LLC
  • 申请人地址: 11717 Exploration Lane Germantown, MD 20876 US
  • 专利权人: Hughes Network Systems, LLC
  • 当前专利权人: Hughes Network Systems, LLC
  • 当前专利权人地址: 11717 Exploration Lane Germantown, MD 20876 US
  • 代理机构: Körfer, Thomas
  • 优先权: US201261622707P 20120411; US201261641578P 20120502; US201261648399P 20120517; US201261650639P 20120523
  • 主分类号: H04L1/00
  • IPC分类号: H04L1/00
Method and apparatus for convolutional coding to support multiplexing in a wideband communications system
摘要:
An approach for encoding a physical layer (PL) header of a PL data frame is provided. The PL header comprises sixteen information bits u i , ( i = 0,1, 2, ... ,15), and the encoding is based on a convolutional code, whereby, for each information bit, five associated parity bits p i,k , ( k = 0, 1, 2, 3, 4) are generated, resulting in 80 codebits. The resulting 80 codebits are punctured to form a (16,77) codeword ( c 0 , c 1 , c 2 , ..., c 76 ). The codebits of the (16,77) codeword are repeated to generate a (16,154) physical layer signaling codeword ( c 0 , c 0 , c 1 , c 1 , c 2 , c 2 , ... , c 76 , c 76 ) for transmission of the PL data frame over a channel of a communications network. Further, for each information bit, each of the associated five parity bits is generated based on a parity bit generator, as follows: p i,k = ( u i * g k, 0 ) ⊕ ( S 0 * g k , 1 )⊕( S 1 * g k , 2 )⊕( S 2 * g k , 3 )⊕( S 3 * g k ,4 )⊕, where S 0 = u i -1 , S 1 = u i -2 , S 2 = u i -3 , S 3 = u i- 4 , and wherein generator polynomials for g k = ( g k ,0, g k ,1, g k ,2, g k ,3, g k ,4, ), are as follows: g 0 = (1,0,1,0,1); g 1 = (1,0,1,1,1); g 2 = (1,1,0,1,1); g 3 = (1,1,1,1,1); g 4 = (1,1,0,0,1).
信息查询
0/0