LEARNING METHOD AND LEARNING DEVICE FOR ADJUSTING PARAMETERS OF CNN BY USING MULTI-SCALE FEATURE MAPS AND TESTING METHOD AND TESTING DEVICE USING THE SAME
摘要:
A learning method for acquiring a bounding box corresponding to an object in a training image from multi-scaled feature maps by using a CNN is provided. The learning method includes steps of: (a) allowing an N-way RPN to acquire at least two specific feature maps and allowing the N-way RPN to apply certain operations to the at least two specific feature maps; (b) allowing an N-way pooling layer to generate multiple pooled feature maps by applying pooling operations to respective areas on the at least two specific feature maps; and (c) (i) allowing a FC layer to acquire information on pixel data of the bounding box, and (ii) allowing a loss layer to acquire first comparative data, thereby adjusting at least one of parameters of the CNN by using the first comparative data during a backpropagation process.
信息查询
0/0