LOW ENTROPY BROWSING HISTORY FOR CONTENT QUASI-PERSONALIZATION
摘要:
The present disclosure provides systems and methods for content quasi-personalization or anonymized content retrieval via aggregated browsing history of a large plurality of devices, such as millions or billions of devices. A sparse matrix may be constructed from the aggregated browsing history, and dimensionally reduced, reducing entropy and providing anonymity for individual devices. Relevant content may be selected via quasi-personalized clusters representing similar browsing histories, without exposing individual device details to content providers.
信息查询
0/0