METHOD AND SYSTEM FOR FEDERATED LEARNING
摘要:
Broadly speaking, embodiments of the present techniques provide a method for training a machine learning, ML, model to update global and local versions of a model. We propose a novel hierarchical Bayesian approach to Federated Learning (FL), where our models reasonably describe the generative process of clients' local data via hierarchical Bayesian modeling: constituting random variables of local models for clients that are governed by a higher-level global variate. Interestingly, the variational inference in our Bayesian model leads to an optimisation problem whose block-coordinate descent solution becomes a distributed algorithm that is separable over clients and allows them not to reveal their own private data at all, thus fully compatible with FL.
信息查询
0/0