System and method for unsupervised text normalization using distributed representation of words
Abstract:
A system, method and computer-readable storage devices for providing unsupervised normalization of noisy text using distributed representation of words. The system receives, from a social media forum, a word having a non-canonical spelling in a first language. The system determines a context of the word in the social media forum, identifies the word in a vector space model, and selects an “n-best” vector paths in the vector space model, where the n-best vector paths are neighbors to the vector space path based on the context and the non-canonical spelling. The system can then select, based on a similarity cost, a best path from the n-best vector paths and identify a word associated with the best path as the canonical version.
Information query
Patent Agency Ranking
0/0