Statistical machine translation based search query spelling correction
摘要:
Statistical Machine Translation (SMT) based search query spelling correction techniques are described herein. In one or more implementations, search data regarding searches performed by clients may be logged. The logged data includes query correction pairs that may be used to ascertain error patterns indicating how misspelled substrings may be translated to corrected substrings. The error patterns may be used to determine suggestions for an input query and to develop query correction models used to translate the input query to a corrected query. In one or more implementations, probabilistic features from multiple query correction models are combined to score different correction candidates. One or more top scoring correction candidates may then be exposed as suggestions for selection by a user and/or provided to a search engine to conduct a corresponding search using the corrected query version(s).
信息查询
0/0