Visual odometry using object priors
Abstract:
Disclosed are techniques for more accurately estimating the pose of a camera used to capture a three-dimensional scene. Accuracy is enhanced by leveraging three-dimensional object priors extracted from a large-scale three-dimensional shape database. This allows existing feature matching techniques to be augmented by generic three-dimensional object priors, thereby providing robust information about object orientations across multiple images or frames. More specifically, the three-dimensional object priors provide a unit that is easier and more reliably tracked between images than a single feature point. By adding object pose estimates across images, drift is reduced and the resulting visual odometry techniques are more robust and accurate. This eliminates the need for three-dimensional object templates that are specifically generated for the imaged object, training data obtained for a specific environment, and other tedious preprocessing steps. Entire object classes identified in a three-dimensional shape database can be used to train an object detector.
Public/Granted literature
Information query
Patent Agency Ranking
0/0