Training method and apparatus for neural network for image recognition
Abstract:
A training method and a training apparatus for a neutral network for image recognition are provided. The method includes: representing a sample image as a point set in a high-dimensional space, a size of the high-dimensional space being a size of space domain of the sample image multiplied by a size of intensity domain of the sample image; generating a first random perturbation matrix having a same size as the high-dimensional space; smoothing the first random perturbation matrix; perturbing the point set in the high-dimensional space using the smoothed first random perturbation matrix to obtain a perturbed point set; and training the neutral network using the perturbed point set as a new sample. With the training method and the training apparatus, classification performance of a conventional convolutional neural network is improved, thereby generating more training samples, reducing influence of overfitting, and enhancing generalization performance of the convolutional neural network.
Information query
Patent Agency Ranking
0/0