- 专利标题: Method and device for transforming CNN layers to optimize CNN parameter quantization to be used for mobile devices or compact networks with high precision via hardware optimization
-
申请号: US16255197申请日: 2019-01-23
-
公开(公告)号: US10325352B1公开(公告)日: 2019-06-18
- 发明人: Kye-Hyeon Kim , Yongjoong Kim , Insu Kim , Hak-Kyoung Kim , Woonhyun Nam , SukHoon Boo , Myungchul Sung , Donghun Yeo , Wooju Ryu , Taewoong Jang , Kyungjoong Jeong , Hongmo Je , Hojin Cho
- 申请人: Stradvision, Inc.
- 申请人地址: KR Pohang
- 专利权人: STRADVISION, INC.
- 当前专利权人: STRADVISION, INC.
- 当前专利权人地址: KR Pohang
- 代理机构: XSensus LLP
- 主分类号: G06K9/00
- IPC分类号: G06K9/00 ; G06T3/40
摘要:
There is provided a method for transforming convolutional layers of a CNN including m convolutional blocks to optimize CNN parameter quantization to be used for mobile devices, compact networks, and the like with high precision via hardware optimization. The method includes steps of: a computing device (a) generating k-th quantization loss values by referring to k-th initial weights of a k-th initial convolutional layer included in a k-th convolutional block, a (k−1)-th feature map outputted from the (k−1)-th convolutional block, and each of k-th scaling parameters; (b) determining each of k-th optimized scaling parameters by referring to the k-th quantization loss values; (c) generating a k-th scaling layer and a k-th inverse scaling layer by referring to the k-th optimized scaling parameters; and (d) transforming the k-th initial convolutional layer into a k-th integrated convolutional layer by using the k-th scaling layer and the (k−1)-th inverse scaling layer.
信息查询