Bayesian tree aggregation in decision forests to increase detection of rare malware
Abstract:
In one embodiment, a computing device provides a feature vector as input to a random decision forest comprising a plurality of decision trees trained using a training dataset, each decision tree being configured to output a classification label prediction for the input feature vector. For each of the decision trees, the computing device determines a conditional probability of the decision tree based on a true classification label and the classification label prediction from the decision tree for the input feature vector. The computing device generates weightings for the classification label predictions from the decision trees based on the determined conditional probabilities. The computing device applies a final classification label to the feature vector based on the weightings for the classification label predictions from the decision trees.
Information query
Patent Agency Ranking
0/0