Video processing for human occupancy detection
Abstract:
Many conventional video processing algorithms attempting to detect human presence in a video stream often generate false positives on non-human movements such as plants moving in the wind, rotating fan, etc. To reduce false positives, a technique exploiting temporal correlation of non-human movements can accurately detect human occupancy while reject non-human movements. Specifically, the technique involves performing temporal analysis on a time-series signal generated based on an accumulation of foreground maps and an accumulation of motion map and analyzing the running mean and the running variance of the time-series signal. By determining whether the time-series signal is correlated in time, the technique is able to distinguish human movements and non-human movements. Besides having superior accuracy, the technique lends itself to an efficient algorithm which can be implemented on low cost, low power digital signal processor or other suitable hardware.
Public/Granted literature
Information query
Patent Agency Ranking
0/0